The q-boson realizations of the quantum group $U_{q}(s l(n+1, C))$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L83
(http://iopscience.iop.org/0305-4470/26/3/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The q-boson realizations of the quantum group $\mathrm{U}_{q}(\operatorname{sl}(n+1, C))$

Č Burdík†, L Černýł and O Navrátil§
\dagger Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechoslovakia
$\$$ Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Technical University of Prague, Trojanova 13, 12000 Prague 2, Czechoslovakía § Institute of Geotechnics, Czechoslovak Academy of Sciences, V Holešovǐ̌kách 41, 18209 Prague 8, Czechoslovakia

Received 30 September 1992

Abstract

We give explicit expression of recurrency formulae of canonical realization for quantum enveloping algebras $\mathrm{U}_{q}(\operatorname{sil}(n+1, C))$. In these formulae the generators of the algebra $\mathrm{U}_{q}(\operatorname{si}(n+1, C)$) are expressed by means of n-canonical q-boson pairs one auxiliary representation of the algebra $\mathrm{U}_{q}(\mathrm{gl}(n, C))$.

In a recent paper, Fu and Ge (1992) gave a general method to construct the q-boson realizations of quantum algebras from their Verma representations. The method was illustrated on two examples of algebras $\mathrm{U}_{q}(\operatorname{sl}(2, C))$ and $\mathrm{U}_{q}(\operatorname{sl}(3, C))$. In the case of Lie algebras this method was formulated by Burdik (1985) and some generalization for $\mathrm{U}_{q}(\mathrm{sl}(2, C))$ by Burdík and Navrátil (1990).

In this letter we are devoted to studying explicitly the general case $U_{q}(s l(n+1, C))$. Because it is difficult to write down the explicit expression of its Verma representation we use the recurrency from $\mathrm{U}_{q}(\mathrm{gl}(n+1, C))$ to $\mathrm{U}_{q}(\mathrm{gl}(n, C))$.

In final formulae the generators of the algebra $U_{q}(\operatorname{sl}(n+1, C))$ are expressed by means of n-canonical boson pairs and auxiliary representation of the algebra $\mathrm{U}_{q}(\mathrm{gl}(n, C))$. We can then obtain the pure q-boson realizations after recurrency.

Very similar formulae were used in our paper (Burkík et al 1992) for construction of irreducible highest weight representations of quantum groups $\mathrm{U}_{q}(\mathrm{gl}(n+1, C))$.

Now it is clear (Fu and Ge 1992) that we can use these formulae for construction of parametrized cyclic representations starting from cyclic representations of q deformed Weyl algebra. We will study the irreducibility of these representations and the results will be published.

We believe that our recurrency method can be used to construct q-boson realizations for deformations of other semisimple Lie algebras as well, and some positive indication for deformation of B_{n} and D_{n} have already been obtained.

The q-Weyl algebras are defined as associative algebras W_{2}^{q} over C generated by b^{+}, b, and $q^{ \pm N}$ satisfying (Hayshi 1990)

$$
\begin{aligned}
& b b^{+}-q^{\mp} b^{+} b=q^{ \pm N} \quad q^{N} q^{-N}=q^{-N} q^{N}=1 \\
& q^{N} b^{ \pm} q^{-N}=q^{ \pm} b^{ \pm} \quad\left(b^{-}=b\right)
\end{aligned}
$$

which degenerates to the usual W algebras in the limit $q \rightarrow 1$.

The n-pairs Weyl algebra we obtain as

$$
W_{2 n}^{q}=W_{2}^{q} \otimes W_{2}^{q} \otimes \ldots \otimes W_{2}^{q} \quad n \text { times }
$$

and the different pairs commute.
The quantum group $\mathrm{U}_{q}(\operatorname{sl}(n+1, C))$ is defined by the generators k_{i}, k_{i}^{-1}, e_{i} and f_{i} for $i=1, \ldots, n$, and the relations

$$
\begin{array}{ll}
k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1 & k_{i} k_{j}=k_{j} k_{i} \\
k_{i} e_{j} k_{i}^{-1}=q^{a_{i i}} e_{j} & k_{i} f_{j} k_{i}^{-1}=q_{f_{i}}^{-a_{i j}} \\
{\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q-q^{-1}}} & \tag{1}\\
{\left[e_{i}, e_{j}\right]=\left[f_{i}, f_{j}\right]=0} & \text { for }|i-j| \geqslant 2 \\
e_{i}^{2} e_{i \pm 1}-\left(q+q^{-1}\right) e_{i} e_{i \pm 1} e_{i}+e_{i \pm 1} e_{i}^{2}=0 \\
f_{i}^{2} f_{i \pm 1}-\left(q+q^{-1}\right) f_{L} f_{i \pm 1} f_{i}+f_{i \pm 1} f_{i}^{2}=0
\end{array}
$$

where $\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is the Cartan matrix of $U_{q}(\mathrm{sl}(n+1, C))$, i.e. $a_{i i}=2, a_{i \pm 1,1}=-1$ and $a_{i j}=0$ for $|i-j| \geqslant 2$.

The generators e_{i}, f_{i} correspond to the simple roots. According to Rosso (1988) and Burroughs (1990) we introduce the generators

$$
X_{n}=e_{n}
$$

and recurrently

$$
\begin{equation*}
X_{r}=e_{r} X_{r+1}-q X_{r+1} e_{r} \quad \text { for } r=1, \ldots, n-1 \tag{2}
\end{equation*}
$$

The generators $k_{t}, k_{t}^{-1}, e_{i}, f_{t}$ for $i=1,2, \ldots, n-1$ and k_{n} form a subalgebra in $\mathrm{U}_{q}(\mathrm{sl}(n+1, C))$ and evidently it is $\mathrm{U}_{q}(\mathrm{gl}(n, C))$. We add to this subalgebra the generator f_{n} and we obtain again the subalgebra which we will denote A.

There exists a very simply representation ϕ of A in $\mathrm{U}_{q}(\mathrm{gl}(n, C))$

$$
\phi(z) y=z \cdot y \phi\left(f_{n}\right) y=0 \quad \text { for any } z, y \in \mathrm{U}_{q}(\operatorname{gl}(n, C)) .
$$

It is a left regular representation. Because

$$
\mathrm{U}_{q}(\operatorname{sl}(n+1, C))(A \otimes z-1 \otimes \phi(A) z) z \in \mathrm{U}_{q}(\mathrm{gl}(n, C))
$$

is an invariant subspace of the left regular of $\mathrm{U}_{q}(\operatorname{sl}(n+1, C))$ we can define a generalized Verma representation ϱ as a factor representation of the left regular of $\mathrm{U}_{q}(\operatorname{sl}(n+1, C))$ with respect to this subspace.

The representation space of the representation ρ is given by

$$
V\left(\lambda_{n}\right)=\left(X_{n}\right)^{m_{n}}\left(X_{n-1}\right)^{m_{n-1}} \ldots\left(X_{1}\right)^{m_{1}} \otimes \mathrm{U}_{q}(g l(n, C))
$$

We will denote

$$
|m\rangle \otimes w=\left|m_{n}, m_{n-1}, \ldots, m_{1}\right\rangle \otimes w=\left(X_{n}\right)^{m_{n}}\left(X_{n-1}\right)^{m_{n-1}} \ldots\left(X_{1}\right)^{m_{1}} \otimes w
$$

where $w \in \mathrm{U}_{q}(\mathrm{gl}(n, C))$ and define the representation Γ of $W_{2(n)}$ on $V\left(\lambda_{n}\right)$ by

$$
\begin{align*}
& \Gamma\left(b_{1}^{+}\right)|m\rangle \otimes w=\left|m+1_{i}\right\rangle \otimes w=\left|m_{n}, \ldots, m_{i}+1, \ldots, m_{1}\right\rangle \otimes w \\
& \begin{aligned}
\Gamma\left(b_{i}\right)|m\rangle \otimes w & =\left[m_{i}\right]_{q}\left[m_{i}\right]_{q}\left|m-1_{i}\right\rangle \otimes w \\
& =\left|m_{n}, \ldots, m_{i}-1, \ldots, m_{1}\right\rangle \otimes w
\end{aligned} \\
& \Gamma\left(q^{\left.N_{t}\right)|m\rangle \otimes w}=\begin{array}{l}
q^{\prime}|m\rangle \otimes w \\
\Gamma\left(\left[N_{1}+\alpha\right]\right)|m\rangle \otimes w=\left[m_{i}+\alpha\right]|m\rangle \otimes w .
\end{array}\right. \tag{3}
\end{align*}
$$

Now for explicit construction we will need the commutation relations X_{j} with e_{i}, f_{i} and k_{r}. Starting from here we will take $r<n$.

Evidently

$$
\begin{equation*}
e_{r} X_{s}=X_{s} e_{r} \quad \text { for } r<s-1 \tag{4}
\end{equation*}
$$

because in X_{s} are included only e_{t} for $t>s+1$ which commute with e_{r}. For further calculation the following lemma will be useful.

Lemma 1. For $r<n$ it is valid

$$
e_{r}^{2} X_{r+1}-\left(q+q^{-1}\right) e_{r} X_{r+1} e_{r}+X_{r+1} e_{r}^{2}=0
$$

Proof. For $r=n-1$ it is true from the definition of (1). Now by an induction, we suppose it is valid for $r=k+1$ and, calculating

$$
e_{k}^{2} X_{k+1}-\left(q+q^{-1}\right) e_{k} X_{k+1} e_{k}+X_{k+1} e_{k}^{2}
$$

from a definition X_{k+1}, we obtain

$$
\begin{aligned}
& e_{k}^{2}\left(e_{k+1} X_{k+2}-q X_{k+2} e_{k+1}\right)-\left(q+q^{-1}\right) e_{k}\left(e_{k+1} X_{k+2}-q X_{k+2} e_{k+1}\right) e_{k} \\
&+\left(e_{k+1} X_{k+2}-q X_{k+2} e_{k+1}\right) e_{k}^{2} .
\end{aligned}
$$

From (4) e_{r} commute with X_{r+2} and we have

$$
\begin{aligned}
& {\left[e_{k}^{2} X_{k+1}-\left(q+q^{-1}\right) e_{k} X_{k+1} e_{k}+X_{k+1} e_{k}^{2}\right] X_{r+2}} \\
& \quad-q\left[e_{k}^{2} X_{k+1}-\left(q+q^{-1}\right) e_{k} X_{k+1} e_{k}+X_{k+1} e_{k}^{2}\right]=0
\end{aligned}
$$

if we use the induction condition.

Simply from lemma 1 we obtain

$$
\begin{align*}
e_{r} X_{r} & =e_{r}^{2} X_{r+1}-q e_{r} X_{r+1} e_{r}=q^{-1}\left(e_{r} X_{r+1}-q X_{r+1} e_{r}\right) e_{r} \\
& =q^{-1} X_{r} e_{r} \tag{5}
\end{align*}
$$

for $r<n$.
Similarly it is possible to prove that

$$
\begin{equation*}
e_{r} X_{s}=X_{s} e_{r} \quad \text { for } r+1>s \tag{6}
\end{equation*}
$$

We will continue the calculation of commutation between f_{r} and X_{s}.
From the definition (4) and the commutation relations (1) we have

$$
\begin{equation*}
f_{r} X_{s}=X_{s} f_{r} \quad \text { for } s>r \tag{7}
\end{equation*}
$$

If $r=s$ the calculation is more complicated than using the definition and the above relations give

$$
\begin{aligned}
& f_{r} X_{r}=f_{r}\left(e_{r} X_{r+1}-q X_{r+1} e_{r}\right) \\
&=\left(e_{r} X_{r+1}-q X_{r+1} e_{r}\right) f_{r}-\frac{\left[\left(k_{r}-k_{r}^{-1}\right) X_{r+1}-q X_{r+1}\left(k_{r}-k_{r}^{-1}\right)\right]}{\left(q-q^{-1}\right)} \\
&=X_{r} f_{r}-X_{r+1} \frac{\left(q^{-1} k_{r}-q k_{r}^{-1}-q k_{r}+q k_{r}^{-1}\right)}{\left(q-q^{-1}\right)}
\end{aligned}
$$

and finally we obtain

$$
\begin{equation*}
f_{r} X_{r}=X_{r} f_{r}+X_{r+1} k_{r} \tag{8}
\end{equation*}
$$

In the last case, $s<r$, then e_{s} and f, commute and if we use the definition of X_{s} we obtain

$$
f_{r} X_{s}=X_{s} f_{r}+e_{s}\left[f_{r}, X_{s+1}\right]-q\left[f_{r}, X_{s+1}\right] e_{s} .
$$

If we put $s=r-1$ we have

$$
\begin{aligned}
f_{r} X_{r-1} & =X_{r-1} f_{r}+e_{r-1} X_{r+1} k_{r}-q X_{r+1} k_{r} e_{r-1} \\
& =X_{r-1} f_{r}+X_{r+1}\left(e_{r-1} k_{r}-q k_{r} e_{r-1}\right)=X_{r-1} f_{r} .
\end{aligned}
$$

By a simple induction we prove

$$
\begin{equation*}
f_{r} X_{s}=X_{s} f_{r} \quad \text { for } s<r \tag{9}
\end{equation*}
$$

Now we have all the commutation relations which we need for the explicit construction of representations ρ. The next lemma gives the explicit form of the commutation relations e_{i}, f_{i} and k_{i} with $X_{j}^{m_{j}}$

Lemma 2. For $r<n$ it is valid

$$
\begin{align*}
& e_{r} X_{r}^{m_{r}}=q^{-m_{r}} X_{r}^{m_{r}} e_{r} \\
& e_{r} X_{s}^{m_{s}}=X_{s}^{m_{s}} e_{r} \quad \text { for } r \neq s-1, s \\
& e_{r} X_{r+1} s_{r+1}^{m_{r+1}}=\left[m_{r+1}\right]_{q} X_{r+1}^{m_{r+1}-1} X_{r}+q^{m_{r+1}} X_{r+1}^{m_{r}} e_{r} \\
& f_{r} X_{s}^{m_{s}}=X_{s}^{m} f_{r} \quad \text { for } r \neq s \tag{10}\\
& f_{r} X_{r}^{m_{r}}=X_{r}^{m_{r}} f_{r}+\left[m_{r}\right]_{q} X_{r+1} X_{r}^{m_{r}-1} k_{r} \\
& k_{r} X_{r+1}^{m_{r 1}}=q^{-m_{r+1}} X_{r+1}^{m_{+1}+1} k_{r} \quad k_{r} X_{r}^{m_{r}}=q^{m}, X_{r}^{m} k_{r} \\
& k_{r} X_{s}^{m_{s}}=X_{s}^{m} k_{r} \quad \text { for } s \neq r, r+1 .
\end{align*}
$$

The special cases are f_{n} and k_{n}. In these cases we define

$$
Y_{n-1}=e_{n-1}
$$

and recurrently

$$
Y_{k}=e_{k} Y_{k+1}-q Y_{k+1} e_{k}
$$

for $k<n-1$ and it is valid

$$
\begin{aligned}
& f_{n} X_{n}^{m_{n}}=X_{n}^{m_{n}} f_{n}-\frac{\left[m_{n}\right]_{q}}{\left(q-q^{-1}\right)} X_{n}^{m_{n}^{-1}}\left[q^{m_{n}-1} k_{n}-q^{-m_{n}+1} k_{n}^{-1}\right] \\
& f_{n} X_{r}^{m_{r}}=X_{r}^{m_{r}} f_{n}-q^{-m_{r}+1}\left[m_{r}\right]_{q} X_{r}^{m_{r}-1} k_{n}^{-1} Y_{r} \\
& k_{n} X_{n}^{m_{n}}=q^{2 m_{n}} X_{n}^{m_{n}} k_{n}, k_{n} X_{r}^{m_{r}}=q^{m_{r}} X_{r}^{m_{r}} k_{n} .
\end{aligned}
$$

Proof. By using the relations (4)-(9) and an induction. The relations of k_{r} directly from the definition (1).

Using the relations (10) of lemma 1 we obtain the explicit form of the representation ϱ

$$
\begin{align*}
\varrho\left(e_{r}\right)|m\rangle \otimes w= & {\left[m_{r+1}\right]_{q}\left|m-1_{r+1}+1_{r}\right\rangle \otimes w+q^{m_{r+1}-m_{r}}|m\rangle \otimes \phi\left(e_{r}\right) w } \\
\varrho\left(f_{r}\right)|m\rangle \otimes w= & {\left[m_{r}\right]_{q}\left|m+1_{r+1}-1_{r}\right\rangle \otimes \phi\left(k_{r}\right) w+|m\rangle \otimes \phi\left(f_{r}\right) w } \\
\varrho\left(k_{r}\right)|m\rangle \otimes w= & q^{m_{r}-m_{r+1}}|m\rangle \otimes \phi\left(k_{r}\right) w \tag{11}\\
\varrho\left(e_{n}\right)|m\rangle \otimes w= & \left|m+1_{n}\right\rangle \otimes w \\
\varrho\left(f_{n}\right)|m\rangle \otimes w= & -\frac{\left[m_{n}\right]_{q}}{\left(q-q^{-1}\right)}\left|m-1_{n}\right\rangle \otimes\left(q^{-1+\sum_{i=1}^{n} m_{i}} \phi\left(k_{n}\right)-q^{1-\sum_{i=1}^{n} m_{i}} \phi\left(k_{n}^{-1}\right)\right) w \\
& -\sum_{k=1}^{n}\left[m_{k}\right]_{q} q^{1-\sum_{i=1}^{k} m_{i}}\left|m-1_{k}\right\rangle \otimes \phi\left(k_{n+1}^{-1} Y_{r}\right) w \\
\varrho\left(k_{n}\right)|m\rangle \otimes w= & q^{m_{n}+\sum_{i=1}^{n} m_{i}}|m\rangle \otimes \phi\left(k_{n}\right) w .
\end{align*}
$$

From the explicit form of the representation ρ we can see that it is possible to rewrite this representation using the representation Γ (3). This representation Γ and representation ϕ are faithful representations and we can formulate the following theorem.

Theorem. The mapping τ defined by formulae

$$
\begin{aligned}
& \tau\left(e_{r}\right)=q^{N_{r+1}-N_{r}} e_{r}+b_{r}^{+} b_{r+1} \\
& \tau\left(f_{r}\right)=f_{r}+b_{r+1}^{+} b_{r} k_{r} \\
& \tau\left(k_{r}\right)=q^{N_{r}-N_{r+1} K_{r}}
\end{aligned}
$$

for $r<n$

$$
\begin{align*}
& \tau\left(e_{n}\right)=b_{n}^{+} \quad \tau\left(k_{n}\right)=q^{N_{n}+\sum_{i=1}^{\eta} N_{i}} k_{n} \tag{12}\\
& \tau\left(f_{n}\right)=-\frac{q^{\Sigma_{i-1}^{\eta} N_{i}} k_{n}-q^{-\sum_{i=1}^{\eta} N_{i}} k_{n}^{-1}}{\left(q-q^{-1}\right)} b_{n}-\sum_{k=1}^{n-1} q^{-\sum_{i=1}^{k} N_{i}} k_{n}^{-1} Y_{k} b_{k}
\end{align*}
$$

is a homomorphism from $\mathrm{U}_{q}(\operatorname{sl}(n+1, C))$ to $W_{2(n)}^{q} \otimes \mathrm{U}_{q}(\mathrm{gl}(n, C))$.
In this letter we have presented some simple generalizations of the construction of Fu and Ge (1992). The realizations of $\mathrm{U}_{q}(\mathrm{sl}(n+1, C))$ are in q-boson pairs and in the generators of the subalgebra $U_{q}(g l(n, C))$. For using our formulae (12) recurrently to obtain the pure q-boson realizations it is also necessary to have an operator $\tau\left(k_{n+1}\right)$. Evidently from our construction it is possible to reformulate for $\mathrm{U}_{q}(\mathrm{gl}(n+1, C))$ and after calculation we obtain

$$
\tau\left(k_{n+1}\right)=q^{\lambda_{n+1}-\sum_{i-1}^{n} N_{1}} .
$$

The pure q-boson realizations are a starting point (see Fu and Ge 1992) for a construction of the cyclic representations in the root of unity. We will study the properties of these representations in a forthcoming paper.

The authors are grateful to the members of the quantum groups seminar, in Prague and especially Dr M Havlícek, for useful discussions.

References

Biederharn LC 1989 J. Phys. A: Math. Gen. 22 L873
Burkík C, Havlíček M and Vančura T 1992 Commun. Math. Phys. in print
Burdik Č and Navrátil O 1990 J. Phys. A: Math. Gen. 23 L1205
Burdik ट 1985 J. Phys. A: Math. Gen. 183101
Burroughs N 1990 Commun. Math. Phys. 127109
Hayashi T 1990 Commun. Math. Phys. 127129
Hong-Chen Fu and Mo-Lin Ge 1992 J. Math. Phys. 33427
Rosso M 1988 Commun. Math. Phys. 117581
_- 1989 Commun. Math. Phys. 124307

